Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint

نویسندگان

  • Yong Chen
  • Ting-Zhu Huang
  • Xi-Le Zhao
  • Liang-Jian Deng
  • Jie Huang
چکیده

Remote sensing images have been used in many fields, such as urban planning, military, and environment monitoring, but corruption by stripe noise limits its subsequent applications. Most existing stripe noise removal (destriping) methods aim to directly estimate the clear images from the stripe images without considering the intrinsic properties of stripe noise, which causes the image structure destroyed. In this paper, we propose a new destriping method from the perspective of image decomposition, which takes the intrinsic properties of stripe noise and image characteristics into full consideration. The proposed method integrates the unidirectional total variation (TV) regularization, group sparsity regularization, and TV regularization together in an image decomposition framework. The first two terms are utilized to exploit the stripe noise properties by implementing statistical analysis, and the TV regularization is adopted to explore the spatial piecewise smooth structure of stripe-free image. Moreover, an efficient alternating minimization scheme is designed to solve the proposed model. Extensive experiments on simulated and real data demonstrate that our method outperforms several existing state-of-the-art destriping methods in terms of both quantitative and qualitative assessments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Destriping in Remote Sensing Imagery: Total Variation with L1 Fidelity

This paper introduces a variational method for destriping data acquired by pushbroom-type satellite imaging systems. The model leverages sparsity in signals and is based on current research in sparse optimization and compressed sensing. It is based on the basic principles of regularization and data fidelity with certain constraints using modern methods in variational optimization, namely, total...

متن کامل

A Novel Removal Method for Dense Stripes in Remote Sensing Images

In remote sensing images, the common existing stripe noise always severely affects the imaging quality and limits the related subsequent application, especially when it is with high density. To well process the dense striped data and ensure a reliable solution, we construct a statistical property based constraint in our proposed model and use it to control the whole destriping process. The alte...

متن کامل

Sparsity Level Constrained Compressed Sensing (SLCCS) for CT Reconstruction

It is a very hot topic to reconstruct images from as few projections as possible in the field of CT reconstruction. Due to the lack of measurements, the reconstruction problem is ill-posed. Thus streaking artifacts are unavoidable in images reconstructed by filtered backprojection algorithm. Recently, compressed sensing [1] takes sparsity as prior knowledge and reconstructs the images with high...

متن کامل

Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise

The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regulariz...

متن کامل

Stripe Noise Removal from Remote Sensing Images Based on Stationary Wavelet Transform

Fourier transform is applied to detect the direction of stripe noise before de-noising, which is advantageous for selecting the corresponding detail coefficients for threshold quantization after stationary wavelet transform. Depending on the direction of stripe noise, the corresponding detail coefficients contain stripe noise need to be removed, while retaining the approximate coefficients and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017